**Echinococcus multilocularis in Urban Coyotes, Alberta, Canada**

Stefano Catalano,1 Manigandan Lejeune,1 Stefano Liccioli, Gulierme G. Verocai, Karen M. Gesy, Emily J. Jenkins, Susan J. Kutz, Carmen Fuentealba, Padraig J. Duignan, and Alessandro Massolo

*Echinococcus multilocularis* is a zoonotic parasite in wild canids. We determined its frequency in urban coyotes (*Canis latrans*) in Alberta, Canada. We detected *E. multilocularis* in 23 of 91 coyotes in this region. This parasite is a public health concern throughout the Northern Hemisphere, partly because of increased urbanization of wild canids.

*Echinococcus multilocularis* is the causative agent of alveolar echinococcosis in humans. This disease is a serious problem because it requires costly long-term therapy, has high case-fatality rate, and is increasing in incidence in Europe (1). This parasitic cestode has a predominantly wild animal cycle involving foxes (*Vulpes spp.*) and other wild canids, including coyotes (*Canis latrans*), as definitive hosts. However, it can also establish an anthropogenic life cycle in which dogs and cats are the final hosts. Rodents are the primary intermediate hosts in which the alveolar/multivesicular hydatid cysts grow and are often fatal. Humans are aberrant intermediate hosts for *E. multilocularis* (2).

In North America, *E. multilocularis* was believed to be restricted to the northern tundra zone of Alaska, USA, and Canada until it was reported in red foxes (*Vulpes vulpes*) from North Dakota, USA (3). This parasite has now been reported in the southern half of 3 provinces in Canada (Manitoba, Saskatchewan, and Alberta) and in 13 contiguous states in the United States (4).

Foxes are the traditional definitive hosts for *E. multilocularis* worldwide. However, in North America, coyotes may be prominent hosts, particularly when they are more abundant than foxes. *E. multilocularis* was reported in 7 (4.1%) of 171 coyotes in the northcentral United States in the late 1960s (3), and subsequently prevalences ranging from 19.0% to 35.0% have been reported in coyotes in the central United States (4).

In Canada, *E. multilocularis* was detected in 10 (23.0%) of 43 coyotes in Riding Mountain National Park, Manitoba (5). In Alberta, 1 case was recorded from the aspen parkland in 1973 (5) but it was not found in coyotes from forested regions and southern prairies (6,7). Nonetheless, *E. multilocularis* is generally considered enzootic to central and southern Alberta on the basis of its prevalence in rodent intermediate hosts. During the 1970s, sixty-three (22.3%) of 283 deer mice (*Peromyscus maniculatus*) trapped in periurban areas of Edmonton were positive for alveolar hydatid cysts (8), and *E. multilocularis* was also detected in 2 deer mice collected <1.8 km from Lethbridge in southern Alberta (9).

Because mice and voles (family Cricetidae, including *Peromyscus spp.*) have been reported as main prey (70.1%) of coyotes in Calgary (10), and coyotes are common in urban areas of Calgary and Edmonton, we suspected a role for this carnivore in the maintenance of the wild animal cycle of *E. multilocularis* in such urban settings. Thus, we aimed to ascertain the frequency of *E. multilocularis* in coyotes from metropolitan areas in Alberta, Canada.

**The Study**

Ninety-one hunted or road-killed coyotes were collected during October 2009–July 2011. Most (n = 83) of the carcasses were from the Calgary census metropolitan area (CMA) (Figure 1). The remainder (n = 8) were opportunistically collected from the Edmonton CMA. Of those from the Calgary CMA, the exact location of collection was known for 60 animals: 27 were from Calgary and 33 were from the rural fringe, including 2 near Strathmore. Of the carcasses from the Edmonton CMA, 7 were from Edmonton and 1 was from a periurban site. Sex and age of 90 of the coyotes were recorded.

Before necropsy, all carcasses were stored at −20°C. Gastrointestinal tracts collected at necropsy were reftroen at −80°C for 3–5 days to inactivate *Echinococcus* spp. eggs. Once thawed and dissected, intestinal contents were washed, cleared of debris, and passed through a sieve (500-μm pores), and the material in the sieve was examined for *Echinococcus* spp.

Adult tapeworms were counted and identified as *E. multilocularis* on the basis of morphologic features (Figure 2). To confirm morphologic identification, PCR was performed by using species-specific primers (11). Briefly, a representative adult worm from each positive animal was

---

11These authors contributed equally to this article.
lysed in 50 μL of DNA extraction buffer (500 mmol/L KCl, 100 mmol/L Tris-HCl, pH 8.3, 15 mmol/L MgCl₂, 10 mol/L dithiothreitol, and 4.5% Tween 20) containing 2 μL of proteinase K. This lysate was further diluted (1:20 in double-distilled water), and 2 μL was used for PCR. Amplicons of an expected 395 bp confirmed infection with E. multilocularis.

E. multilocularis was identified in 23 (25.3%) of 91 coyotes by using morphologic and molecular identification. Among positive animals, 18 (20.5%) of 83 were from the Calgary CMA and 5 (62.5%) of 8 were from the Edmonton CMA. In the Calgary CMA, 4 (14.8%) of 27 positive animals were found in the city and 9 (27.3%) of 33 were found in the rural fringe (Figure 1). Five (21.7%) of 23 coyotes for which the location was not recorded were also positive.

E. multilocularis intensity (number of cestodes per host) ranged from 1 to 1,400 (median 20.5). The frequency of infection was significantly higher in male coyotes (n = 44, 34.19%) than in female coyotes (n = 46, 15.2%; χ² 4.337, df 1, P<sub>out</sub> = 0.05) (Table). No difference was detected between 43 juvenile coyotes and 47 adult coyotes (Table).

Conclusions

We demonstrated that E. multilocularis is common in coyotes of metropolitan areas of Calgary and Edmonton, Alberta, Canada, including their urban cores. This finding might indicate an emerging phenomenon similar to that observed in Europe with infiltration of urban centers by E. multilocularis caused by an increase in red foxes in cities such as Copenhagen, Geneva, and Zurich (2). In Alberta,
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 18, No. 10, October 2012

probably unnecessary, and public health messages should
public awareness about prevention and transmission risk are
unfeasible (2,12). Interventions other than improving
public health messages should
target veterinarians and dog owners because domestic dogs
probably represent the main infection route for humans
in North America (2,12). Genetic characterization of E.
multilocularis and spatially explicit transmission models
should also be developed to better assess risks of this
emerging zoonosis in North America and worldwide.

Acknowledgments

Our data suggest that E. multilocularis is enzootic in
coyotes in Alberta and that perpetuation of the wild animal
cycle of E. multilocularis within cities and surroundings
and potential infection of domestic dogs may pose a
zoonotic risk, as documented on Saint Lawrence Island,
Alaska, and in China (2,12). With a considerable increase in
domestic dog population of Calgary (32.1% increase since
2001, a total of 122,325 dogs in 2010; Animal and Bylaw
Services of the University of Calgary. S.J.K was supported by
Natural Sciences and Engineering Research Council of Canada.

This study and A.M. were supported by the Animal and
Bylaw Services of the city of Calgary, and the Faculty of Veterinary
Services of the University of Calgary. S.J.K was supported by
Natural Sciences and Engineering Research Council of Canada.

Mr Catalano is enrolled in the MSc graduate program at the
Faculty of Veterinary Medicine, University of Calgary, Alberta,
Canada. His research interests include wildlife diseases and the
ecology of parasites in wild animal communities.

References

2. Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern.

Table. Echinococcus multilocularis in coyotes carcasses collected in Calgary (n = 83) and Edmonton (n = 8) census metropolitan
areas, Alberta, Canada, October 2009–July 2011*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total</th>
<th>No. (%) positive or median (range)</th>
<th>No. negative</th>
<th>IQ distance</th>
<th>χ² (2)</th>
<th>df</th>
<th>pexact Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>44</td>
<td>15 (34.1)</td>
<td>29</td>
<td>NA</td>
<td>4.337</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>F</td>
<td>46</td>
<td>7 (15.2)</td>
<td>39</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasite intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>NA</td>
<td>9 (1–1,400)</td>
<td>NA</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>NA</td>
<td>59 (9–822)</td>
<td>NA</td>
<td>137</td>
<td>(−1.406)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Age‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvenile</td>
<td>43</td>
<td>14 (33.3)</td>
<td>29</td>
<td>NA</td>
<td>1.661</td>
<td>1</td>
<td>0.226</td>
</tr>
<tr>
<td>Adult</td>
<td>47</td>
<td>8 (17.0)</td>
<td>39</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasite intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvenile</td>
<td>NA</td>
<td>9 (1–151)</td>
<td>NA</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>NA</td>
<td>32 (1–1,400)</td>
<td>NA</td>
<td>520</td>
<td>(−0.737)</td>
<td>0.518</td>
<td></td>
</tr>
</tbody>
</table>

* Values in **boldface** indicate a significant difference. Higher prevalence in male coyotes suggests a role for sex in parasite dispersion. Frequencies of cestodes in males vs. females and juveniles vs. adults were analyzed by using χ² test. Parasite intensity (no. parasites per host) among sex and age classes was compared by using Mann-Whitney test for independent samples. IQ, interquartile distance; NA, not applicable.
†Probability of distribution was estimated by using the permutation approach (pexact).
‡Sex and age of 1 coyote were not recorded.

Acknowledgments

Our data suggest that E. multilocularis is enzootic in
coyotes in Alberta and that perpetuation of the wild animal
cycle of E. multilocularis within cities and surroundings
and potential infection of domestic dogs may pose a
zoonotic risk, as documented on Saint Lawrence Island,
Alaska, and in China (2,12). With a considerable increase in
domestic dog population of Calgary (32.1% increase since
2001, a total of 122,325 dogs in 2010; Animal and Bylaw
Services Survey 2010, www.calgary.ca/CSPS/ABS/Pages/
home.aspx) and substantial human population growth
(32.9% increase in Calgary since 1999; Statistics Canada,
is needed of potential transmission risks associated with
changing city landscapes and E. multilocularis in the urban
environment.

In Canada, only 1 autochthonous human case of
alveolar echinococcosis has been reported in Manitoba (13).
However, imported cases have been described. In Alberta,
there are no known reports of alveolar echinococcosis. This
finding may be caused by the long incubation time required
for clinical manifestation in humans (12) or a strain of E.
multilocularis with a low zoonotic potential. Although
there is little evidence of human risk from the strain of E.
multilocularis in central North America (14), a human case
caused by this strain has been confirmed (15).

Our finding of E. multilocularis in coyotes in urban
regions in Alberta suggests that surveillance for this parasite
should be increased in North America. Although removal
of this parasite from domestic dogs and cats is effective,
eradication from free-ranging definitive hosts may be
unfeasible (2,12). Interventions other than improving
public awareness about prevention and transmission risk are
probably unnecessary, and public health messages should


Address for correspondence: Alessandro Massolo, Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary AB T2N 4Z6, Canada; email: amassolo@ucalgary.ca